Publications

Optical Materials (OM)
Bottom-up fabrication of hybrid plasmonic sensors:
Bottom-up fabrication of hybrid plasmonic sensors: gold-capped hydrogel microspheres embedded in periodic metal hole arrays
2016
M. Weiler, C. Menzel, T. Pertsch, R. Alaee, C. Rockstuhl, C. Pacholski
The high potential of bottom-up fabrication strategies for realizing sophisticated optical sensors combining the high sensitivity of a surface plasmon resonance with the exceptional properties of stimuli-responsive hydrogel is demonstrated. The sensor is composed of a periodic hole array in a gold film whose holes are filled with gold-capped poly(N-isoproyl-acrylamide) (polyNIPAM) microspheres. The production of this sensor relies on a pure chemical approach enabling simple, time-efficient, and cost-efficient preparation of sensor platforms covering areas of cm2. The transmission spectrum of this plasmonic sensor shows a strong interaction between propagating surface plasmon polaritons at the metal film surface and localized surface plasmon resonance of the gold cap on top of the polyNIPAM microspheres. Computer simulations support this experimental observation. These interactions lead to distinct changes in the transmission spectrum, which allow for the simultaneous, sensitive optical detection of refractive index changes in the surrounding medium and the swelling state of the embedded polyNIPAM microsphere under the gold cap. The volume of the polyNIPAM microsphere located underneath the gold cap can be changed by certain stimuli such as temperature, pH, ionic strength, and distinct molecules bound to the hydrogel matrix facilitating the detection of analytes which do not change the refractive index of the surrounding medium significantly.

Details

Journal Article
ACS Applied Materials & Interfaces
8
39
26392–26399
10.1021/acsami.6b08636

Download